第36章 脑袋上有包吗?!(2 / 2)

“但是今天,我结合《超数导论》里的知识,证明这个算法确实存在!实际上

一个完整的问题不难!现在有很多搜索方法,比如:最近邻法、插入法、模拟退火算法、遗传算法、神经网络算法等等!就是不统一!“

“关于na=a,证明大纲可以简单描述为三个简单的定理!”

“定理一

设g=(v,e)是简单无向图,va,vb是g中距离大于2的两个顶点,e'=ev{(va,vb)},则g'=(v,e')与g有相同的最大团。

推论:对于任意简单无向图g=(v,e),存在一个简单无向图g’=(v,e’),它满足:

1e?e’;

(2)g’中任意两个顶点之间的距离不大于2;

(3)g’与g有相同的最大团。”

“定理2

设g=(v,e)为

简单无向图,

≥3,如果g中任意两个顶点之间的距离不大于2,则存在

多项式时间算法可以解决g在这种算法下的图着色问题,即确定g的顶点色数。”

“定理三

设g=(v,e)为

简单无向图,

≥3,如果g中任意两个顶点之间的距离不大于2,那么g的图着色问题(点色数问题)可以在

多项式时间内g的最大团问题。“

“万犊子,我不懂!”

“傻狗!主管已经画好图了,你可以照着图再看一遍!”

“我没事!跟上!”

“记笔记!妈的!这是世界数学的一个未解之谜!”

“不要说话!影响了我的学习!”

每一位数学专家都记录了徐明说的话,写的东西。

在接下来的时间里,徐明验证了上面总结的命题。

验证过程自然与刘秀的假设没有什么不同!

na完全问题的主要解决方法在于几何,而刘秀的假设主要偏向于理论计算。

相对来说,

一个比刘秀的假设更难解决的问题。毕竟都是几何图形,徐明还要解释,还要画图。

这一次,观众明白了很多。

毕竟换个思路,这个世界级的问题就好理解了。

“我明白!”

“我也是!没想到主管把这么难的问题解释得这么简单!”

“我佩服你!”

“我也可以当学霸!”

“我得赶紧记下来,回去冒充我的导师!”

“好主意!”

徐明一边画一边看弹幕。看来这次大家都明白了,那些专家一定知道发生了什么!

大约三个小时后,徐明伸了个懒腰:“哎呀!终于解决了!”

看着三十多张卫生纸,徐明不禁抹了把汗。

答:虽然完整的问题不用耗费你的心智,但是太累了!

用铅笔和黑笔画完图,徐明的右手黑乎乎的,好像涂了一层黑漆!

尼玛!

感觉洗不掉!

看了看时间,感觉差不多了。徐明觉得是时候解释一下霍奇猜想了!

现在演播室的人数已经达到了1亿,包括很多海外的威廉用户,都在实时观看徐明的直播。

所以,m国应该是早上十点多了!

这些数学专家也擅长拼写。估计从早上六点开始,他们就开始在床上看自己的解决方案了。

完全是个问题。我一直跟着自己到中午!

“啊!na,完整问题的答案到此结束!现在我有一个问题要问你!”

徐明尴尬的挠了挠头。

“我的右手下黑洞洞的,估计是水冲出来的!大家有什么好的刷油方法吗!”

“哈哈哈哈!”

“我想不出当大学霸的问题!”

“这个我真不知道!”

“网上搜生活小贴士!”

“我知道!主管可以先用洗发水搓手,洗完再用点白醋,最后用肥皂去除残留气味!”

“主管可以试试把牙膏和洗洁精混在一起!”

“大学霸也有不知所措的一天!有意思!”

徐明看着弹幕里的各种小妙招,赶紧进卫生间仔细打扫。

嘿!

聊一个话题让我手里全是笔油。看来这个学习也是个脏活!

“谢谢你的小妙招,那么接下来我们来解释一下霍奇猜想……”

“小鸡,你真漂亮!宝贝!你真漂亮……”

徐明刚要继续解释,手机突然响了!

“我喜欢主管的铃声!”

“哦吼?这不是我坤坤的歌!爱,我的坤!”

“大家好!我是个人练习生,练了两年半了。我叫奥利!”

“不爱请不要伤害!”

“尊重她的人!”

“噗哈哈哈哈!”

“对不起各位,我接个电话!”许看看电话号码竟然是妈妈打来的!

每天这个时候,妈妈已经睡着了。为什么这个时候突然给自己打电话?

我肯定看过我的直播。为什么不打电话关心一下?

“哎!妈妈,我在直播呢。怎么了?”

徐明悻悻的拿起了电话。

但是十秒钟后,刚刚还嬉皮笑脸的徐明突然变丑了!

主页出事了!

“你很抱歉!我有急事要处理,霍奇猜我只能等到下次来接了!真的很抱歉!”

“唉?不要走,主管!”

“播出了?”

“我还没看过呢!”

“主管说有急事!”

“加油,主管!”

“等你回来!”

“拜拜!”

徐明刚挂了电话,关了直播,这时赵龙的电话打了进来。

举报本章错误( 无需登录 )